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Introduction

- Lattice calculation very interesting and useful

• Probe equilibrium QCD gauge field configurations with a

uniform ~B

• Calculate electric charge separation, and dependence on

external ~B, T , mq, χ SB...

- Moscow group [Phys.Rev.D80:054503,2009] (discussion session this afternoon)

- UConn group [PoS (2009) arXiv:0911.1348]
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Charge separation (chiral magnetic effect)

The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect

Let us consider, following Wilczek [10], a magnetic monopole in the pres-
ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero

charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫
dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-

netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e
θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will

induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.
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The Chiral Magnetic Effect I:
Charge separation  
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DK ’04;
DK, A. Zhitnitsky ‘06

In general ρ = q2

8π2
~∇θ · ~B

Take θ static, non-zero

only between domain-walls

(“parallel-plate capacitor”)

“Plates” are charged, with

charge density ±q2θB/2π2

E = θ
q2

4π2
B

(Kharzeev, arXiv:0906:2808;

Kharzeev and Zhitnitsky, 2006)
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Zero Modes of /D

Useful to work with low modes of the Dirac operator.

Physical picture: ~B polarizes the zero mode(s) associated with

the instanton (quark and anti-quark)

Spectral decomposition of Dirac operator

(/D +m)ψλ = (iλ+m)ψλ

(/D +m)−1 =
∑

λ

ψ
†
λψλ

iλ+m

Calculate eigenvectors of hermitian Domain Wall Fermion

operator instead, γ5(/D +m). Zero modes are the same.
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Contribution to charge density

ρ = ψ̄γ0ψ

= tr(/D +m)−1γ0 = trγ5/DHγ0

=
∑

λ

ψ
†
λγ0γ5ψλ

λ+m

ψλ is eigen-vector of hermitian Dirac operator

contribution to ρ = 0 for an exact chiral zero-mode, so in pres-

ence of ~B, zero-mode → near-zero mode

(use exactly conserved current for DWF)
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Domain wall fermions (aside)

Kaplan (1992), reformulated for QCD by Shamir (1993)

Chiral fermions on the lattice at non-zero lattice spacing

By adding extra-fifth direction for fermions

Chiral zero modes stuck to boundary

Finite size of extra dimension Ls – explicit χ SB

Small additive quark mass, mres (draw picture)
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Classical instanton (-like solution)

Put classical, topological charge = 1, instanton on lattice

Chen, et al, PRD59 (1999)

Aµ = −i
3∑

j=1

ηjµνλj
xν

x2 + ρ2

ρ(r) = ρ0

(
1−

r

rmax

)
Θ(rmax − r)

Smoothly cutoff instanton as r → rmax < L/2.
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Boundary Conditions in presence of ~B (Al-Hashimi, Weise (2008))

In infinite volume for ~B = Bẑ (z dir), Ay = Bx

On torus, BC’s in x-y directions are

Ax(x+ Lx, y) = Ax(x, y), Ay(x+ Lx, y) = Ay(x, y) +BLx

Ax(x, y + Ly) = Ax(x, y), Ay(x, y + Ly) = Ay(x, y)

To respect gauge invariance, fermion fields must be gauge-transformed:

ψ(x+ Lx, y) = exp (−ieBLxy)ψ(x, y), ψ(x, y + Ly) = ψ(x, y)

which implies eBLxLy = eΦB = 2πn, magnetic flux is quantized

on torus!
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Classical instanton (-like solution)

84 lattice, ρ0 = 10, rmax = 3

“peeled” view
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Classical instanton (-like solution)

γ5|ψ0〉 = ±|ψ0〉 〈ψ0|γ5|ψ0〉 = ±1 (for zero-modes)
γ5|ψλ〉 = |ψ−λ〉 〈ψ−λ|γ5|ψλ〉 = 1 (for non-zero-modes)

Same is true for DWF if mres small

Chirality: 〈Ψi|Γ5|Ψj〉 Plot, Bz = 0
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Classical instanton (-like solution)

Magnitude of the zero mode(s), Bz = 0

Loc. around “instanton” (1) “Lattice-artifact Instanton” (3)
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Classical instanton (-like solution)

more “lattice-artifact zero-modes” (4 of them)

1+3+4 (+4 plane waves) = 12 zero modes
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Classical instanton (-like solution)

Apply magnetic field Bz in z-direction

Bz = 0 Bz = 0.0981748 (nΦ = 1)
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Classical instanton (-like solution)

Magnitude of the zero mode, Bz = 0.0981748 (nΦ = 1)

Charge separation!
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Classical instanton (-like solution)

Degeneracy of Landau levels goes like nΦ:

Bz = 0.19635 (nΦ = 2) Bz = 0.294524 (nΦ = 3)
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and so on...
15



Classical instanton (-like solution) Put it all together.
It works...
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Charge in top (z-)half of lattice from near-zero-modes.
Dividing in x, y, or t gives zero, effect flips sign under Bz → −Bz
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Classical instanton (-like solution)

Bz = 0.19635 (nΦ = 2)

“Instanton-like”

zero mode(s).

There are two.

〈Ψi|Γ5|Ψj〉 ∼
±0.8

Very large charge

separation.

Only occurs for

this Bz.

17



QCD+QED Lattice Simulations

- Nτ = 8, Nf=2+1, DWF (RBC+LLNL). Eventually 1+1+1

- Couple sea quarks to QCD and QED

- Include external magnetic field ~B in dynamical evolution

- Work in fixed topological sector(s)

• use the DSDR method (Vranas, JLQCD, RBC)
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Topological Charge History

Q from 5li method of de Forcrand, et al., APE smearing
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2+1 flavors, Nt = 8, T >∼ Tc
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Top. charge and low eigen-modes

Low eigen-modes

correlated with

instantons

APE smeared,

“5LI” definition

of Q. Q = 9 − 10

(5li) for con-

fig. 420, or 10

from zero-modes

(index)

2 “zero-modes”,

1 “near-zero

mode” shown
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2+1 flavor QCD

Bz = 0 (10 zero modes) Bz = 1.22718 (9 zero modes)
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for Bz = 0.490874-1.22718

21



2+1 flavor QCD

Bz = 0 (10 zero modes) Bz = 1.22718 (9 zero modes)
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For 10th mode, 〈Ψi|Γ5|Ψj〉 ∼ 0.999998,0.9998,0.993, 0.823

for Bz = 0.490874-1.22718
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Charge density (from zero modes)

Charge separation, but localized around instanton?
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Charge density (from zero modes)

Bz = 0.490874,

0.736311

Bz = 0.981748,

1.22178

|ρmax| = 0.002,

0.167, 1.627,

1.825
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Charge separation (from zero modes)
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Charge separation for large Bz, nΦ = 30 to 50

Depends on Ls (lattice artifact χ SB – expensive)
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Charge separation (from zero modes)

How large is large?

a2eBz = 2π/(LxLy)nΦ

T ≈ Tc, so a−1 ≈ 1.4− 1.5 GeV (∼0.14 fm)

Bz ≈ 1.5− 2 GeV2

if rinst ≈ (1− 2)a, (L/rinst)
2 = 16− 32

quenched studies: 〈rinst〉 ≈ 0.3 fm
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Charge separation (from non-zero modes)

Is the vacuum lumpy? (Phys. Rev. D 65 (2001) and others)

course, such configurations must be present for finiteLs and
finite lattice spacing. As the gauge configurations change
continuously from one winding number to another, a plot of
the sort shown in these figures must also change continu-
ously and hence cannot always have the simple structure of
Fig. 1. While for the Wilson gauge action somewhat more
than half of the configurations show the complex pattern of
Fig. 2, for the better-behaved Iwasaki case, this fraction has
dropped to 10%. It should be emphasized that all the low-
lying eigenvectors studied, both complex and simple ones,
fall off rapidly away from the walls, with the minimum mag-
nitude of the wave function between the walls falling at least
a factor of 30 below its value on the two physical bound-
aries.

Such gauge configurations in which the winding number
is changing can be associated with zero modes of the four-
dimensional Wilson Dirac operator with mass equal to
2M5 @13,14#. Numerical simulations@15# suggest that the
density of such four-dimensional Dirac operator zero modes
decreases exponentially with the exponential of the coupling,
r;e2c/Aa, so that such effects may vanish rapidly as the
continuum limit is approached.

Close to the continuum limit, the typical gauge configu-
ration will be sufficiently continuous that its winding number
can be identified@16#. As the winding number changes one
expects that localized, rapidly changing gauge fields will ap-
pear and small dislocations, on the scale of a very few lattice
spacings, will appear or disappear. It is natural to speculate
that such configurations produce the complexG5 matrix ele-
ments of Fig. 2 and the nonzero density of four-dimensional
Dirac zero modes described above. The comparison of
Iwasaki and Wilson results suggests that, while such configu-
rations are quite common for the Wilson gauge action when
a21'2 GeV, they are dramatically suppressed under simi-
lar circumstances by the form of the action proposed by
Iwasaki. This general topic is the subject of much current
research@17–20#.

FIG. 3. The distribution of global chirality of the eigenvectors of
DH evaluated at zero input quark massmf50.

FIG. 4. The distribution of local chiralityXH(x)/VH(x) of near
zero mode eigenvectors ofDH on the Iwasaki ensemble of gauge
fields for sites whereC†(x)C(x) is greater than an arbitrary im-
posed cut. The different cuts correspond to keeping between 1%
and 8% of the total sites in the space-time lattice.

FIG. 5. The same quantities as in Fig. 4, but for nonzero mode
eigenvectors and again for the Iwasaki action. The double-peak
structure is a feature expected in instanton-dominated models of the
QCD vacuum.

TABLE I. Fractions of lattice sites and eigenvector normaliza-
tion included for the six cutsVH(x).Vmin used in this paper.

Iwasaki action Wilson action
Vmin3105 Fraction of Fraction of Fraction of Fraction of

lattice sites normalization lattice sites normalization

3 0.086 0.285 0.080 0.319
4 0.043 0.186 0.042 0.235
5 0.024 0.132 0.026 0.186
6 0.015 0.100 0.017 0.156
7 0.010 0.079 0.012 0.136
8 0.007 0.064 0.009 0.121

CHIRALITY CORRELATION WITHIN DIRA C . . . PHYSICAL REVIEW D 65 014504

014504-5

local chirality, ψ†γ5ψ(x)

will be peaked around

±1 if it is

So near-zero modes

probably contribute to

charge-separation as

well

But they will “screen”

each other

Correlate with local chi-

rality?
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Summary

• 2+1 (1+1+1) QCD+QED simulations to investigate chiral magnetic
effect

• Initial results for classical instanton (-like) and QCD configurations show
that it really works!

• Need T , ~B, mq scans

• “Unfreeze” topology (Q) of gauge field

• Exploit dynamical QED+QCD configurations

• Important for understanding the recent results from RHIC

Calculations done on NY blue and QCDOC supercomputers at Brookhaven
National Lab.

Thanks to Dima Kharzeev for useful discussions and Massimo Di Pierro for
help with 3d plots
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